Capabilities Statement — ReSCIND GrammaTech Inc.

GrammaTech has an extensive background in the area of cybersecurity and defense, as well as specific
experience related to the ReSCIND problem statement in terms of systems modeling, monitoring, and
mitigation. This document briefly highlights two recent projects in these areas, specifically an
autonomic monitoring and mitigation framework and a system for modeling and verifying system-level
security properties. Please direct any questions or teaming inquiries to zfry@grammatech.com.

Monitoring and Mitigation

Runtime monitoring for anomalous behavior of software systems is a critical validation technique as part
of defense-in-depth cybersecurity solutions. Such techniques compliment static analyses and runtime
pattern-matching based approaches that only identify known attacks and are thus likely to miss
unknown or 0-day attacks. There exist many policy verification languages to support runtime validation
and anomaly detection, but each is often tailored to a specific domain, making it difficult to express
policies that embody multiple verification methods for a variety of problem areas. The specificity of
these languages can often make it difficult for non-experts to understand, create and modify policies.
Furthermore, the associated monitoring engines are often specific to a narrow set of programs and
runtime environments, limiting broad applicability.

We introduce a new language, Tiffin, designed to express widely-scoped program behavior
specifications as enforceable runtime policies. We also introduce a toolset that uses Tiffin policies as
input to produce concrete application monitors encoding the developed policies. These monitors check
adherence to the specification and respond appropriately when policies are violated. Tiffin is designed
to express a wide variety of program behavior characteristics from extended finite automata and
invariants, to enforcing interfaces and memory access constraints as well as guiding component-based
fuzzing. The developed toolset consists of a policy compiler, mgen, with multiple backends, that can
produce monitors in the form of application-level dynamic translation wrappers for monitoring specific
standalone targets; hypervisors that can monitor firmware or operating systems; or binary rewriters that
can permanently weave a policy into an application. Together, the developed technologies aim to
provide autonomous runtime validation for a variety of program and deployment types that is easy to
specify and deploy, even by non-experts. This presentation specifically describes use cases for
application-level policy enforcement, firmware-level policy violation detection and response, and how
said policies can be used to identify bugs by fuzzing components to detect policy violations.

This material is based upon work supported by the Office of Naval Research and the Air Force Research
Laboratory under contracts N68335-19-C-0200, FA8650-20-C-1106, and FA8650-17-F-1056. Any
opinions, findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the Office of Naval Research or the Air Force
Research Laboratory.

System Modeling and Validation

Modern software systems, ranging from home networks to nation-critical infrastructures, are assembled
from general COTS and open-source components. These components are built to be versatile - usable in
a variety of different contexts. For a system to accomplish its mission, its components must be properly


mailto:zfry@grammatech.com

configured to interoperate. However, system configuration is complicated in practice: local
configuration changes often have a profound system-wide effect. Misconfiguration can both hamper
system functionality and have severe security repercussions.

Formal Methods enable users to systematically reason about the global configuration of a system - to
detect and diagnose cases where the configuration needs to be tightened to improve security or relaxed
to enable the desired functionality. A few techniques for formally modeling various configuration
aspects have been proposed over the last several decades. The most recent surge of research activity
focuses on the configuration of cloud applications. Existing techniques vary in scope and level of detail
(e.g., range from detailed modeling of configuration for a single Apache web server instance to high-
level modeling of network configuration in a large enterprise network). Each technique only supports a
narrow set of configuration surfaces and employs custom semantics definitions for system primitives,
making it difficult to extend or combine these techniques for unified, system-wide configuration
reasoning.

We propose an extensible modeling framework that decouples the modeling of implementation-specific
system aspects from backend analyses. Central to our approach is an extensible library of reusable
system-building primitives, such as, Linux user, Windows group, Ethernet network interface, and
OpenSSH service. Models of arbitrarily complex systems can be automatically constructed by stitching
together these building blocks. We designed a formal language that uses general programming
concepts, such as abstract data types, strict static typing, and hierarchical composition of components to
effectively build low-level library primitives and capture complex system concepts, such as network
access, service availability, and remote system and file access. Our approach offers the following
advantages:

Our language and modeling methodology allows users to effectively extend the library with support for
additional systems and services. Given the multitude of software components and services actively used
in real-world systems and the pace at which new technologies are developed, easy extensibility is
paramount.

Client analyses have a uniform and extensive query language for checking system properties. This allows
our modeling framework to be employed in many important application areas, including configuration
management, penetration testing, red teaming, and forensic analysis.

The semantics of low-level system primitives (e.g., Linux directory) and high-level concepts (e.g., remote
file access) is uniformly captured as a deductive database (a database system that stores a set of facts
and uses a set of well- defined rules to derive additional facts from stored facts), allowing for an
effective query evaluation using either existing off-the-shelf solvers or newly developed mechanisms.

The current version of our library supports a subset of Linux file access controls, remote login services,
simplified web services, and basic networking. We have built models for several notional and real-world
systems with sufficient accuracy to detect and diagnose non-trivial security issues, such as non-
authorized system access due to an exposed private key and a sensitive information leak due to a
symbolic link misuse. To provide a sense of scale, a model we auto-constructed for a system with 20
devices connected to half a dozen of subnets has 2K configuration parameters, 4K facts, and over 200
rules. Configuration parameters include firewall-rule lists, file ownership and permissions for selected
files, a user-to-group assignment, a subset of SSH configuration options, etc. To query the model, we
compile it into a Prolog program and use an off-the-shelf prolog interpreter (SWI-Prolog). We chose this
approach to enable rapid prototyping. Much more efficient query evaluation mechanisms can be



adopted in practice, such as stratified datalog solvers (e.g., Souffle) or SMT solvers (e.g., Z3). However,
even our current solution takes under 2 minutes to evaluate all stated access-control requirements for
the system described above (10K individual queries).

Acknowledgements. This research was developed with funding from the Defense Advanced Research
Projects Agency (DARPA). The views, opinions and/or findings expressed are those of the author and
should not be interpreted as representing the official views or policies of the Department of Defense or
the U.S. Government.



